Ecophysiology

Duarte Ferreira G, Romano F, Medić N, Pitta P, Hansen PJ, Flynn KJ, Mitra A, Calbet A (2021) Mixoplankton interferences in dilution grazing experiments. Scientific reports11: 1-16. https://doi.org/10.1038/s41598-021-03176-0

Leles SG, Bruggeman J, Polimene L, Blackford J, Flynn KJ, Mitra A (2021) Differences in physiology explain succession of mixoplankton functional types and affect carbon fluxes in temperate seas. Progress in Oceanography 190:102481 https://doi.org/10.1016/j.pocean.2020.102481

Ferreira GD, Calbet A (2020) Caveats on the use of rotenone to estimate mixotrophic grazing in the oceans. Scientific Reports 10:3899 https://doi.org/10.1038/s41598-020-60764-2

Flynn KJ, Skibinski DOF (2020) Exploring evolution of maximum growth rates in plankton. Journal of Plankton Research 42:497–513 doi:10.1093/plankt/fbaa038

Maselli M, Altenburger A, Stoecker DK, Hansen PJ (2020) Ecophysiological traits of mixotrophic Strombidium spp. Journal of Plankton Research 42: 485–496 https://doi.org/10.1038/s41598-020-69174-w

Traboni C, Calbet A, Saiz E (2020) Effects of prey trophic mode on the gross-growth efficiency of marine copepods: the case of mixoplankton. Scientific Reports 10:12259 https://doi.org/10.1038/s41598-020-69174-w

Flynn KJ, Mitra A, Anestis K, Anschütz AA, Calbet A, Ferreira GD, Gypens N, Hansen PJ, John U, Martin JL, Mansour J, Maselli M, Medić N, Norlin A, Not F, Pitta P, Romano F, Saiz E, Schneider L, Stolte W, Traboni C (2019) Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now? Journal of Plankton Research https://doi.org/10.1093/plankt/fbz026

Leles SG, Polimene L, Bruggeman J, Blackford J, Ciavatta S, Mitra A, Flynn KJ (2018) Modelling mixotrophic functional diversity and implications for ecosystem function. J. Plankton Res., 40: 627-642 https://doi.org/10.1093/plankt/fby044

Lin C-H, Flynn KJ, Mitra A, Glibert PM (2018) Simulating Effects of Variable Stoichiometry and Temperature on Mixotrophy in the Harmful Dinoflagellate Karlodinium veneficum. Front. Mar. Sci. 5: 320 doi:10.3389/fmars.2018.00320

Ghyoot C, Flynn KJ, Mitra A, Lancelot C, Gypens N (2017) Modeling plankton mixotrophy: a mechanistic model consistent with the Shuter-type biochemical approach. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00078

Ghyoot C, Lancelot C, Flynn KJ, Mitra A, Gypens N (2017) Introducing mixotrophy into a biogeochemical model describing an eutrophied coastal ecosystem: The Southern North Sea. Prog. Oceanogr. 157: 1-11 http://dx.doi.org/10.1016/j.pocean.2017.08.002

Mitra A, Flynn KJ, Tillmann U, Raven JA, Caron D, Stoecker DK, Not F, Hansen PJ, Hallegraeff G, Sanders R, Wilken S, McManus G, Johnson M, Pitta P, Våge S, Berge T, Calbet A, Thingstad F, Jeong HJ, Burkholder J, Glibert PM, Granéli E, Lundgren V (2016) Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition; incorporation of diverse mixotrophic strategies. Protist 167: 106-120 https://doi.org/10.1016/j.protis.2016.01.003

Lundgren VM, Glibert PM, Granéli E, Vidyarathna NK, Fiori E, Ou L, Flynn KJ, Mitra A, Stoecker DK, Hansen PJ (2016) Metabolic and physiological changes in Prymnesium parvum when grown under, and grazing on prey of, variable nitrogen : phosphorus stoichiometry. Harmful Algae 55: 1-12 https://doi.org/10.1016/j.hal.2016.01.002

Flynn KJ, Hansen PJ (2013) Cutting the canopy to cefeat the “selfish gene”; conflicting selection pressures for the integration of phototrophy in mixotrophic protists. Protist 164: 811-823 https://doi.org/10.1016/j.protis.2013.09.002

Flynn KJ, Mitra A (2009) Building the “perfect beast”: modelling mixotrophic plankton. J. Plankton Res. 31: 965-992 https://doi.org/10.1093/plankt/fbp044